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Abstract
We study a three-electron system in a double-layer quantum dot under a
magnetic field by means of the exact diagonalization of the Hamiltonian
matrix. Discontinuous ground-state energy transitions induced by an external
magnetic field are reported. Series of magic numbers of the angular momentum
which minimize the ground-state electron–electron interaction energy have
been obtained.

1. Introduction

A quantum dot (QD) consists of an artificial structure in which electrons are confined in all three
spatial dimensions and thus have a fully quantized energy spectrum. A set of electrons held in
such a structure is conceptually similar to a set of atomic electrons bound to a nucleus, and for
this reason QDs are sometimes termed ‘artificial atoms’ [1, 2]. Usually, one considers two-
dimensional (2D) or disc-like QDs with the lateral size much larger than the extent in the growth
direction. These dots have typically a disc-like shape with a lateral confinement potential that to
a good approximation is parabolic. Most theoretical and experimental studies have so far been
focused on the electronic structure of a single disc-like QD [3–5]. The most striking feature
of 2D QDs is that the correlation and magnetic field effects are greatly enhanced compared
with their normal counterparts. This feature makes quantum confined semiconductors very
promising for possible device applications in microelectronics, non-linear optics, and many
other fields.

The electron–electron interaction in QDs has a profound influence on the ground state,
which occurs in a magnetic field only at certain magic values of the total angular momentum
L and total spin S [3]. In 1993 Yang et al [6] investigated the phase diagrams, and the
most important finding was the discovery of the transition of the quantum numbers L and
S of the ground state in accord with the variation of the strength B of the magnetic field.
This definitely implies a phase transition, i.e., a transition of structures. Thereby, when the
magnetic field continuously increases, jumps in a number of physical properties such as the
optical properties [7], electronic heat capacity [3], and magnetization [8] from one plateau to
another plateau will occur.
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In an effort to understand the fractional quantum Hall effect, Laughlin [9] first studied the
states of a three-electron system in two dimensions in a strong magnetic field and confined by a
parabolic potential. Laughlin explicitly constructed the spin-polarized correlated states in the
lowest Landau level and showed that they approximated the exact eigenstates well. The ground
states turned out to be incompressible since only ‘magic numbers’ of the angular momentum
L = 3k (k = 1, 2, 3, . . .) of the ground state minimize the Coulomb repulsion. In 1995 Ruan
et al [4] studied the effect of quantum mechanical symmetry in determining the features of 2D
three-electron QDs and showed the origin of the magic numbers.

Recently, attention has been focused on double-layer few-electron systems [10–12]
(artificial molecules), where the additional degree of freedom enriches the physics. It is then
intriguing to consider what happens if we laterally confine a double-layer few-electron system
to form vertically coupled QDs. Because fascinating correlation effects are known to occur
in double 2D (bilayers) systems and double 1D systems (double quantum wires [13]), we can
expect to find interesting phenomena in double 0D systems (double dots), which are the subject
of the present work. Such a double QD, with one state per dot, has recently been proposed as
a possible candidate for the two-qubit entanglement required for quantum computation.

In 1993 Bryant [14] studied the energy spectra, charge densities, and correlation functions
for interacting two-electron systems in coupled dots as functions of the applied bias. In 1996
Oh et al [15] studied the electronic structure in coupled QDs with one or two electrons in
magnetic fields. They were interested in the spin transitions of the ground state and the optical
transitions between the energy levels. In 1998 Kaputkina and Lozovik [16] studied the energy
spectra for interacting two-electron systems in horizontally and vertically coupled QDs as
functions of QD separation, lateral confinement, and magnetic field. They considered each dot
as a strictly 2D system. Tokura et al [17] next investigated the electron states in two vertically
coupled QDs using an exact diagonalization method. In this paper we will concentrate on
a three-electron QD system consisting of double-layer QDs, investigated by means of exact
numerical diagonalization. Such a system is the simplest that includes both intra-dot and
inter-dot interactions. In addition to the interesting and fundamental correlation and quantum
effects, this system is very important as a candidate for use as the gate of a quantum computer.

2. The model and the method

The system that we study is a double dot containing three electrons. We assume that the upper
dot contains electrons 1 and 2 and the lower dot contains electron 3. In both dots the electron
motion is perfectly 2D, and the lateral confining potential within each layer is assumed to be
parabolic, 1

2 m∗ω2
0r2. The dots are separated in the vertical direction with their centres aligned

on a common axis. The external magnetic field is assumed to be lying along the z-direction.The
electron–electron interaction is taken to be the unscreened Coulomb potential. We assume that
the electrons can exchange between the two dots when the distance d is small. The Hamiltonian
for the three electrons with the same effective mass m∗

e in a double-layer QD is given by
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where the momentum, position vector, and vector potential associated with the i th electron are
given by �pi , �ri , and �Ai respectively, ω0 is the confining strength of the QD, Vintra and Vinter

are respectively the intra-dot and inter-dot electron–electron interactions, g∗ is the effective
Landé factor, µB is the Bohr magneton, Sz is the z-component of the total spin, d is the
distance between the vertically coupled dots. With the symmetric gauge for the vector potential
�A = 1

2 B(−y, x, 0), the Hamiltonian can then read [6, 14]

H =
3∑

i=1

(
p2

i

2m∗
e

+
1

2
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eω
2r2

i

)
+ Vintra + Vinter +

1

2
ωc Lz − g∗µB BSz, (4)

where ω =
√

ω2
0 + ω2

c/4, ωc = eB/m∗
e is the cyclotron frequency, Lz is the total orbital angular

momentum along the z-direction.
A set of the centre-of-mass (cm) and canonical relative coordinates are introduced to

describe the motion of the particles: Rcm = ∑3
i=1 �ri/3, �ξ1 = �r2 − �r1, �ξ2 = �r3 − (�r1 + �r2)/2.

Equation (4) can then divided into two independent parts:

H = Hcm + Hr , (5)

where

Hcm = P2
cm

2M
+

1

2
Mω2 R2

cm, (6)

is for the cm motion and M = 3m∗
e is the total mass. It is trivial (simply a harmonic oscillation).

Hr is for the relative motion:

Hr = H0 + Vintra + Vinter , (7)

with
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2∑

ν=1

(
p2
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+
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2ξ2
ν

)
+
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where µ1 = m∗
e/2 and µ2 = 2m∗

e/3.
For a disc-like QD, the eigenstates of Hr are classified according to the total angular

momentum L and the total spin S. To obtain the eigenfunctions and eigenenergies associated
with relative motion, Hr is diagonalized in a model space spanned by the translationally
invariant 2D harmonic product bases {�[K ] ≡ Ã[φn1�1(�ξ1)φn2�2(�ξ2)χ

S
S12

]L}, where [K ] denotes

the set of quantum numbers (n1, �1, n2, �2), χ S
S12

= [(η(1)η(2))S12η(3)]S, φn�(�ξ) is a 2D
harmonic oscillator state with frequencies ω and energy (2n + |�| + 1)h̄ω. η(i) is a spin state
of a single electron and S12 is the spin of the electrons 1 and 2. In practical calculations, ω

serves as a variational parameter for minimizing the energies. Ã is an anti-symmetrizer. The
anti-symmetrization and the calculation of the related matrix elements are realized by using
the 2D Talmi–Moshinsky coefficients [18]. It is notable that the basis functions do not form an
orthogonal set due to the anti-symmetrization; hence, in practical calculations, an additional
procedure of orthogonalization is needed to extract linearly independent basis functions. The
matrix elements of Hr are then given by the following expressions:

〈�[K ]|H0|�[K ′]〉 = {[2(n1 + n2) + |�1| + |�2| + 2]h̄ω + 1
2 ωc Lz − g∗µB BSz}δ[K ],[K ′] (9)
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1
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′
1
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2
δ�2,�
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2

(10)

with
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U I
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where Rn� is the radial part of a 2D harmonic oscillator function. We let �ξ ′
1 = �r2 − �r3, �ξ ′

2 =
�r1 − (�r2 + �r3)/2. Let us define
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which is the transformation bracket of two 2D harmonic product states with two different sets
of relative coordinates. Then
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Evidently, the introduction of B[K ],[K ′] can help to reduce the other multiple integral into a single
integral. Non-vanishing B[K ],[K ′] occurs only when the two states �[K ](�ξ1, �ξ2) and �[K ′](�ξ ′

1,
�ξ ′

2)

have exactly the same eigenenergy and eigenangular momentum. An analytical expression for
B[K ],[k′] has already be derived in [18]. The accuracy of the solutions depends on how large the
model space is. Since we interested only in the low-lying states and in the qualitative aspects,
the model space adopted is neither very large—to facilitate numerical calculation—nor very
small—to ensure qualitative accuracy. This is achieved by extending the dimension of the
model space step by step; in each step the new results are compared with previous results from
a smaller space, until satisfactory convergence is achieved. In this paper, the dimension of the
model space is constrained by 0 � N = 2(n1 + n2) + |�1| + |�2| � 24. If N is increased by 2,
the ratio of the difference in energy is less than 0.01%.

3. Numerical results

In what follows the energy unit is meV and the length unit is nm. We used the following
parameters: m∗

e = 0.067 me (me is the mass of the free electron), ε = 12.4, and g∗ = −0.44,
which are typical for a GaAs system, and a confinement strength h̄ω0 = 1.0 meV is adopted.
First we calculated the correlation energy spectra of the low-lying states for the single-dot case,
i.e., d = 0, as a function of the external magnetic field (see figure 1) for two different values of
the total spin: (a) S = 3/2 and (b) S = 1/2. It is the competition between the single-particle
energy and the interaction energy that finally determines the total energy. The existence of
the Zeeman term ωc Lz/2 (negative) enables states with larger L to be possibly even lower
in energy than those with smaller L. As a result, the lowest state of a spin configuration
moves to states with larger L as magnetic field increases. However, the transition is strictly
limited to being between two magic values of L. It is readily seen that the magic series for the
three-electron single QD is L = 3k if S = 3/2, where k is an integer, or L �= 3k if S = 1/2.
The arising of magic angular momenta in three-electron QDs can be easily explained from an
analysis of symmetry [4, 19].

To see intuitively the effect of inter-dot correlation, we set d = 10.0 nm and h̄ω0 =
1.0 meV (i.e., a double-layer QD) and plotted in figure 2 the correlation energy spectrum of
the low-lying states for the fully polarized system (S = 3/2). We find that the ground-state
transition is qualitatively the same as those of a three-electron single dot; and as the distance
d increases, the ground-state transitions shift to higher magnetic field. This can be interpreted
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Figure 1. Correlation energy spectra of the state with lowest L as functions of magnetic field; (a)
S = 3/2; (b) S = 1/2. The solid curves are associated with magic numbers L; the dashed curves
are associated with non-magic values of L . The numbers in the figures label the angular momenta
of the state. The parameters are taken as appropriate for GaAs; h̄ω0 = 1.0 meV and d = 0.

as follows. The orbital radii of the electrons are proportional to the QD size and the quantum
number of the angular momentum [20]. When the magnetic field increases, the dot size will
decrease and the electrons will in turn jump to higher orbits with higher angular momentum
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Figure 2. As figure 1(a), but for d = 10.0 nm.

to avoid repulsive interaction energy. When the distance d increases, the repulsive interaction
energy decreases and the electrons jump to higher orbits at higher magnetic field.

It is interesting to compare the above results with those obtained when the distance d
between the vertically coupled dots is larger, such that the two dots become independent.
Obviously, for a larger separation, the electron tunnellings between the two dots can be
negligible. In this case, the spin S12 of the electrons 1 and 2 is a good quantum number. In
figure 3 we plotted the correlation energy spectra of the low-lying states for the fully polarized
system (i.e., S12 = 1) as functions of the external magnetic field B with d = 100.0 nm and
h̄ω0 = 1.0 meV. They is qualitatively the same as those for a two-electron single QD. The two-
electron single-dot system has been studied in great detail by Merkt et al [21]. As is required
by the Pauli principle, L = 2k + 1 if S12 = 1 and L = 2k if S12 = 0. Obviously, in figure 3,
it is readily seen that the ground transitions occur in the sequence of values L = 2k + 1 as the
magnetic field is increased. For a fully polarized three-electron system, it is the sequence of L =
2k + 1, and L �= 3k—which can become the lowest state for uncoupled dots—fails to become
the lowest state for coupled dots. The physical origin is that the equilibrium configuration of the
three-electron system in coupled dots is an equilateral triangle with the particles at the vertices
when their positions are vertically projected onto the same x–y plane, but that of two-electron
systems in QDs is a linear chain with the particles on the two ends. If the wavefunction
is smoothly (without nodal lines) distributed around the above equilibrium configurations,
the binding will be averagely strong and the internal motion will appear only as a gentle
oscillation around the equilibrium configuration. The total energy can then be minimized.
Due to quantum mechanical symmetry confinement, there are only certain states with the
magic angular momenta that can form the above equilibrium configurations. Obviously a
cyclic permutation is equivalent to a rotation by 120◦ in an equilateral triangle configuration
and a permutation is equivalent to a rotation by 180◦ in a linear chain configuration; hence,
the magic number sequences of three-electron coupled QDs and uncoupled QDs are different.
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Figure 3. As figure 1(a), but for d = 100.0 nm.

In conclusion, we have numerically diagonalized the Hamiltonian of three interacting
electrons in a double-layer QD with parabolic potentials under a magnetic field. We have
found magic numbers intrinsic to vertically coupled QDs. As for the single-dot systems, the
ground-state transitions of vertically coupled QDs have been found to occur only at certain
magic values of L, showing a selection rule for the total angular momentum L. As the distance
d between the two-layer dots increases, the ground-state transitions shift to higher magnetic
field. The inter-dot correlation leads to some sequences of possible disappearances of ground
states which are present for uncoupled dots.
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